
Grant Agreement No.: 687645
Research and Innovation action
Call Topic: H2020 ICT-19-2015

Object-based broadcasting – for European leadership in next
generation audio experiences

D4.3: Final report on the work on representation, archiving and
provision of Object-based Audio

Version: v1.0

Deliverable type R (Document, report)

Dissemination level PU (Public)

Due date 31/01/2018

Submission date 12/02/2018

Lead editor Andreas Silzle (FHG)

Authors Niko Färber (FHG), Tilman Herberger (MAGIX), Marius Vopel (Magix),
Benjamin Duval (Trinnov), Matt Firth (BBC), David Marston (BBC), Matt
Paradis (BBC), Niels Bogaards (ECANDY), Michael Meier (IRT), Olivier
Warusfel (IRCAM), Thibaut Carpentier (IRCAM), Markus Noisternig (IRCAM)

Reviewers Werner Bleisteiner (BR)

Work package, Task WP 4, T4.1, T4.2, and T4.3

Keywords Formats, BW64, ADM, MPEG-H, DASH, IP-Studio, Sequoia, iOS app

Abstract

This deliverable describes the representation, archiving and provision of object-based audio. It builds
on D4.1, which describes the requirements, and D4.2, which describes the selected and used
formats. This deliverable describes the implementation experience gained during the project,
especially for the Audio Definition Model and the metadata formats for non-linear reproduction.

This deliverable also serves as a documentation of milestone MS4.3 “Final implementation and
documentation of formats for representation, archiving and provision of object-based audio” which
has been achieved on 31/01/18.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 2 of 29

Document revision history

Version Date Description of change List of contributor(s)

0v1 21/12/2017 Initial version Andreas Silzle (FHG), Nikolaus
Färber (FHG)

0v11 12/01/2018 MAGIX raw text inserted Tilman Herberger

0v12 19/01/2018 MAGIX text refined Marius Vopel

0v2 23/01/2018 Additions by BBC Matt Firth (BBC), David Marston
(BBC), Matt Paradis (BBC)

0v3 25/01/2018 Additions by ECANDY Niels Bogaards (ECANDY)

0v4 29/01/2018 Additions by IRT Michael Meier (IRT)

0v5 30/01/2018 Additions by IRCAM Olivier Warusfel (IRCAM), Thibaut
Carpentier (IRCAM), Markus
Noisternig (IRCAM)

0v6 08/01/2018 Editorial changes Andreas Silzle (FHG)

V1.0 12/02/2018 Final editing Uwe Herzog (EURES)

Disclaimer

This report contains material which is the copyright of certain ORPHEUS Consortium Parties and may
not be reproduced or copied without permission.

All ORPHEUS Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the ORPHEUS Consortium Parties nor the European Commission warrant that the
information contained in the Deliverable is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person using the information.

Copyright notice

© 2015 - 2018 ORPHEUS Consortium Parties

1
 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 3 of 29

Executive Summary

This deliverable describes the representation, archiving and provision of object-based audio. It builds
on D4.1, which describes the requirements and D4.2, which describes the selected and used formats.
This deliverable describes the implementation experience gained during the project.

The implementation, usage and translation of the Audio Definition Model (ADM) is described for the
DAW Sequoia, the real-time production software IP-Studio, the ADMix tools suite, and the MPEG-H
format. The formats for the end-user device AV receiver and the end-user software iPhone app and
Browser app are explained. It is explained how the Universal Media Composition Protocol (UMCP)
format is used in IP-Studio and how it is related to ADM. Also the mapping of ADM to the Sequoia
internal data representation is explained and justified.

The use cases found in the ADM expert workshop are listed. The ADM pre-processor, mainly
developed to reduce the number of audio objects in a meaningful way, with its reduction mechanism
is explained. The issues to translate a general ADM description are described. The solution of
defining an ADM Broadcast profile and using ADM template is presented.

The metadata for the non-linear reproduction, importance levels, inserted in the DAW Sequoia, their
usage on the production and reproduction side in the iPhone app, are described. With mechanism
variable length requirements from the end-user to a program can be implemented in an elegant way.

The usage of DASH and the WebAudio API for the browser implementation in ORPHEUS is explained.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 4 of 29

Table of Contents

Executive Summary .. 3

Table of Contents ... 4

List of Figures ... 5

List of Tables .. 6

Abbreviations ... 7

1 Introduction ... 8

2 Experience with the Implementation of Production Formats for Distribution and Archiving
 .. 9

2.1 In IP-Studio ..9

2.1.1 UMCP and the Production Interface...9

2.1.2 How UMCP relates to the ADM ... 10

2.2 In Sequoia: Mapping the ADM to the project structure of Sequoia 11

2.3 In ADMix Tools Suite .. 14

2.3.1 Editing of metadata ... 15

2.3.2 Current Limitations .. 16

2.3.3 Comments on the ADM format ... 17

2.4 In the ADM Pre-Processor ... 17

3 Experience with the Implementation of Provision Formats for Distribution to the End-user
 .. 20

3.1 Translation of ADM to MPEG-H ... 20

3.2 Formats used in iPhone App .. 21

3.3 Formats used in AVR .. 22

3.4 Formats used in Browser App .. 22

3.4.1 Serial ADM for Playout... 23

4 Implementation of Metadata Formats for Non-linear Reproduction 24

4.1 Implementation in Sequoia ... 24

4.2 Implementation in iPhone App .. 25

5 ADM Expert Workshop ... 26

6 Conclusions .. 28

References ... 29

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 5 of 29

List of Figures

Figure 1: UMCP Compositions for Mermaid's Tears ... 10

Figure 2: Internal structure of a Sequoia project .. 11

Figure 3: ADM structure .. 11

Figure 4: VIP with open ADM project .. 12

Figure 5: Metadata editor concept ... 13

Figure 6: Using the ToscA plugin to connect a DAW with the ADMix Recorder 14

Figure 7: Metadata editor and routing matrix of the ADMix Recorder .. 15

Figure 8: Scene viewer used to set the position of the objects. ... 16

Figure 9: [Upper-left] Configuration file of the ToscA plugin used to define the automation
parameters (Cartesian position and the gain of an object). [Right] View of the list of automation
parameters in the corresponding track of the DAW. [Lower-left] A view of the x and y automation
tracks. .. 16

Figure 10: Pre-Processor within the reference architecture... 18

Figure 11: Slightly simplified ADM structure of an audio scene that can be used as input to the pre-
processor. .. 19

Figure 12: Relation between ADM and MPEG-H metadata .. 20

Figure 13: Processing chain for translating ADM to MPEG-H. .. 21

Figure 14: Overview of DASH reception and browser-based rendering ... 22

Figure 15: “Experience object-based audio” created by BR with added markers for interest level 24

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 6 of 29

List of Tables

Table 1: ADM tags supported by Sequoia ... 13

Table 2: List of use cases of the ADM expert workshop with slightly simplified/shortened
descriptions ... 27

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 7 of 29

Abbreviations

AAC Advanced Audio Coding

ADM Audio definition model

API Application programming interface

BBC British Broadcasting Corporation

BR Bayerischer Rundfunk

BW64 Broadcast Wave 64Bit

BWF Broadcast wave

DASH Dynamic Adaptive Streaming over HTTP

EBUCore Metadata set definition by the European Broadcasting Union (EBU-UER)

FHG Fraunhofer Gesellschaft

HOA Higher Order Ambisonics

IP Internet Protocol

IP-Studio BBC’s development of an integrated AV technology using IP standard

ITU-R International Telecommunication Union, Radio communication Sector

JSON Format for exchanging object data

MHAS MPEG-H Audio Stream

MPD Media Presentation Description

MPEG Moving Picture Experts Group

NGA Next Generation Audio

NMOS Networked Media Open Specifications

OB Outside broadcasting

OSC Open Sound Control

PCM Pulse-code modulation

S-ADM Serial ADM

UMCP Universal Media Composition Protocol

XML Extensible Markup Language

https://de.wikipedia.org/wiki/Moving_Picture_Experts_Group

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 8 of 29

1 Introduction

This deliverable is the final report on representation, archiving and provision of object-based audio. It
builds on deliverable D4.1 and D4.2.

D4.1 has outlined the basic requirements for representation (a file or stream containing), archiving
(long-term storage) and provisioning (the distribution to end-user, including IP delivery, unicast
streams and file downloads) of object-based audio. These formats have to interoperate seamless
within the signal chain blocks of the broadcast implementation architecture:

 Recording

 Pre-production and mixing

 Radio studio

 Distribution to the end-user and their reception

For both, file and streaming formats, specific audio related metadata has to be attached in order to
enable typical object-based audio features. Here, the ITU-R defined Audio Definition Model (ADM) is
the envisioned, most recent standard. It encompasses a full range of requirements; amongst them
metadata support, existing standards, file size, compression, and support of advanced audio.

The requirements for the streaming formats were explained: synchronization, other existing
standards, unicast and multicast transmission, latency, bitrate reduction, quality of service and
specific requirements for streaming object-based audio metadata. Because there is not a single
format capable of fulfilling all requirements and for all use cases, several formats have to be applied
simultaneously. The difficulty and requirements of interoperability between these different formats
were outlined.

The backward and forward compatibility issue with legacy systems was discussed: how to integrate
legacy content formats in new production systems, as well as how to handle new content the best
possible way for legacy emission systems.

The above listed information and requirements were the basis for the selection and new definitions
of file and streaming formats, selected for the reference architecture and the pilot implementations.

In D4.2 the selected formats for the ORPHEUS project for production have been defined: BW64,
ADM, NMOS, UMCP. BW64 has become the most prominent format for audio and metadata. It
allows file sizes larger than 4 GByte and includes the metadata in ADM format. The within the
ORPHEUS project necessary and selected metadata parameters were nominated and explained,
including their respective value range. NMOS and UMCP are described as fundamental formats in
BBC’s IP Studio production software.

Various ongoing standardisation activities for these formats, in which several partners are involved,
were mentioned. The implementation status of the formats in IP Studio and the DAW Sequoia were
explained as well as practical issues for ADM to MPEG-H metadata conversions and the requirements
for archiving using BW64.

For distribution and provision to the end-user, MPEG-DASH as advanced adaptive streaming
technique is used to deliver AV content to HTML5 capable browsers and MPEG-H clients. The used
standards and the technical details for MPEG-DASH and the AAC plus ADM Streaming were listed, as
well as the streaming solution of MPEG-H over DASH. For AAC plus ADM streaming the necessary
steps are encoding, segmentation, transfer to public domain, media reference and playback and
rendering. The advanced features of the Next Generation Audio (NGA) codec MPEG-H were
mentioned, including the way how packaged into MPEG-DASH. Short syntax examples are given for
both cases, as well as several references to the used standards and explaining publications.

D4.3 now describes the implementation experience gained during the project: which features are
used, issues regarding the specification and implementation, the application programming interface
(API) and performance issues are explained.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 9 of 29

2 Experience with the Implementation of Production Formats
for Distribution and Archiving

2.1 In IP-Studio

2.1.1 UMCP and the Production Interface

Within IP-Studio, object-based productions are composed and stored using the Universal Media
Composition Protocol (UMCP). As explained in section 2.6 of Deliverable 4.2, UMCP is a method to
describe the contribution and processing of individual media assets to produce a new piece of media.
These sets of instructions are known as UMCP Compositions.

The ORPHEUS Production Interface for IP-Studio uses the UMCP API to write Compositions describing
a production. The API provides a Web Socket subscription feature which broadcasts notifications of
Composition modifications to clients. This allows an IP-Studio UMCP rendering pipeline to subscribe
to the Composition and produce an in-studio monitoring feed. The Composition can also be received
by processing and distribution pipelines for broadcast.

UMCP provides a powerful feature that allows a Composition to reference another Composition as a
contributing source. This ‘cascading’ or ‘nesting’ ability enables productions to become modular by
breaking them down in to more manageable pieces. It also enables subsections of a production to be
encapsulated and reused within other productions by simply creating that subsection in a separate
Composition. This was the methodology used in producing ‘The Mermaid’s Tears’ pilot.

In ‘The Mermaid’s Tears’, the client was able to experience three different perspectives of the drama
by following one of the three main characters as they moved between locations. Since each audio
source could contribute to one or more experiences, this modular ability of UMCP was particularly
effective.

In producing the drama, each audio source (e.g., actor microphone or sound effect) was
encapsulated in its own Composition, which were termed ‘Elements’. These Elements contributed to
parent ‘Room’ Compositions, which built the soundscapes of the various locations in the drama. The
contribution of Elements to Room Compositions could be dynamically controlled, allowing for
characters to effectively move between rooms. Above these Compositions were three ‘Story’
Compositions, which were the three experiences offered to the client. These Compositions tracked
each one of the main characters as they moved between Rooms by switching between contributing
Room Compositions. This ensured that the client experienced the entire soundscape at the
characters location, which could include the voices of other characters.

The relationship of these three types of Compositions is shown in Figure 1, where the connections
between the Compositions change as each of the stories evolve.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 10 of 29

Figure 1: UMCP Compositions for Mermaid's Tears

The flexibility of UMCP enables generic metadata to be inserted in to Compositions as well as data
needed to reproduce the object-based production. Using this capability, the production interface was
able to insert image triggers in to the UMCP stream, which were subsequently used to dynamically
present images to the client to compliment the drama via the web app.

UMCP began development in 2016 at BBC R&D. As a young and evolving technology, it was inevitable
that there would be some shortcomings and limitations in UMCP. The ORPHEUS project provided an
excellent use case and test implementation for the technology which highlighted some issues.

The most limiting factor encountered during development of the production interface was that the
UMCP API was capable of processing only a few parameter updates each second, making smooth
fade or pan changes impossible. In addition, the latency of notifications to subscribed clients was
over a second. This issue has been addressed to some extent, with the API now able to process
approximately 20 updates a second with a latency of around 10ms when loaded with 150 connected
clients. There are additional planned improvements which are expected to further increase
performance. This includes an active area of work to develop a distributed implementation of the API
which is expected to not only dramatically improve performance, but also reliability.

The long-term goal for UMCP is to open source the specification to encourage adoption within the
industry.

2.1.2 How UMCP relates to the ADM

The question of why UMCP is required when there is the ADM, or vice versa, can be asked. While
they are both metadata formats of sorts, they have different purposes and scopes. UMCP is more
generalised, covering both audio and video and does not specify the media parameters themselves,
but rather a structure to carry them and how they are connected. Whereas the ADM only covers
audio, and it does specify the audio parameters, so is less abstract. So, in theory, UMCP could be
used as carrier for ADM metadata.

Another key difference is indicated in their names – UMCP is a composition protocol, but ADM is a
definition model. So UMCP is used to carry real-time information about the composition from the
controls used to produce the media, such as the audio mixing desk gain controls used in the
Mermaid’s Tears pilot. The ADM is used to carry the definition of the resultant audio mix for
subsequent distribution and processing.

Therefore, a typical setup in the production process would be to have an ADM metadata (or more
likely Serial ADM in a live set-up) generator on the output of the production chain. The UMCP
metadata would then be used within the IP Studio production area as an input to the ADM metadata
generator to modify its parameters (and possibly the accompanying audio).

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 11 of 29

2.2 In Sequoia: Mapping the ADM to the project structure of Sequoia

Due to the structural differences between the ADM standard and Sequoia’s internal data
organization, the implementation of import and export mappings for the specific object-based
metadata introduced a non-trivial task. The ADM hierarchy presents a greater number of levels,
which may also be nested. By comparison the data model of Sequoia is much simpler and
straightforward (see Figure 2 and Figure 3).

Figure 2: Internal structure of a Sequoia project

Figure 3: ADM structure

At first it seemed like the obvious solution would be to map ADM objects to Sequoia clips, but after
regarding the most important use cases for ADM projects, it was decided to have Sequoia tracks fulfil
this role (see Figure 4).

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 12 of 29

Figure 4: VIP with open ADM project

The following factors brought us to this decision:

User Experience for audio engineers: We wanted to make the ADM integration as transparent and
comfortable as possible for audio engineers. They typically use tracks to organize large productions
and assign panning information and other metadata to these tracks.

Integration of interactivity features: The ADM allows for the definition of a variety of interactivity
features, giving the end client the means of presenting a more individualized experience. Within the
ORPHEUS project the focus has been on language switching and foreground/background balancing.
In both cases the audio material is typically represented in parallel tracks. Representing ADM objects
as clips would likely make the editing of these features rather tedious.

Current technical limitations: A normal track bus in Sequoia as well as any clips placed on it cannot
hold more than two audio channels and one set of automation parameters. An ADM object however
may contain any number of audio channels with individual pan and gain data. Representing ADM
objects as clips would require very extensive and time-consuming modifications to Sequoia’s internal
structures.

The sum of these factors led to the decision of representing ADM objects using tracks and ADM
content elements using folder tracks as a way of grouping objects together.

In Sequoia it is possible for the user to add comments to clips, tracks or whole projects. This
functionality was created as a means of easily taking quick notes e.g. about mixing decisions that
were made. Having this kind of information saved right within a project file is a convenient way of
relaying thoughts or plans to another user in a collaborative setting or keeping this information for
when a project is reopened years later.

The track comment field can now be used to access or add metadata to ADM objects by including
certain tags as well. For multichannel objects, such tags need to be included on the first associated
track only.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 13 of 29

Feature Tagging format ADM relation

Language association [language=<desired
language>]

This tag sets the language of the ADM
audioProgram, and, if multiple different language
tags are used, creates additional audioPrograms
for alternative language versions with the
corresponding objects tied to them.

Foreground/back-
ground association

[foreground] This is represented by generating additional
objects labelled ‘foreground’ and ‘background’
without any referenced audio. They only serve an
additional way of grouping the actual audio
objects, which are nested below them. Only
foreground objects need to be tagged. All other
objects are assigned to the background implicitly.
It should be noted that this is not a standardized
field in the ADM, but rather a specific way of using
it. The feature was added nevertheless, since it
was deemed an important use case.

Importance [importance=<0-10>] This assigns an importance value to an object.
Using this information a renderer might choose to
discard an unimportant object e.g. when the load
of processing gets too high.

Interactive muting [onOffInteract] This tag indicates that a user may mute the
associated object interactively. A pre-processing
tool might also use this information to render a
project to a channel bed, while preserving
interactive objects as separate elements.

Table 1: ADM tags supported by Sequoia

The current state of implementation was geared towards the needs of the ORPHEUS project, i.e. only
the required features were realized. For a proper release version it is planned to create a dedicated
metadata editing module (see Figure 5).

Figure 5: Metadata editor concept

For a more detailed overview see deliverable D3.6.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 14 of 29

2.3 In ADMix Tools Suite

The ADMix tools suite is composed of three main components able to read, render and record ADM
files, respectively. A fourth component is able to extract the XML data chunk embedded in the ADM
file and creates a series of graphs (DOT format) depicting the structure of the metadata. The ADMix
tools suite is available for MacOS and MS Windows.

Whereas the ADMix Renderer is a pure standalone application able to read and render an ADM file
over any kind of rendering setup, the ADMix Recorder should rather be considered as a “plug-out”
that can be interconnected with any Digital Audio Workstation (DAW) using the Open Sound Control
(OSC) protocol to transmit the ADM metadata. Although this approach presents some limitations, the
advantage is that this application can be used with any existing DAW that does not yet support ADM
export/import or that does not yet support all the ADM features.

The audio rendering of the ADMix tools is based on the IRCAM Spat~ real-time software library [1]
which supports most of the existing 2D and 3D rendering formats, in particular binaural over
headphones, VBAP, and HOA over 2D or 3D loudspeaker layouts. These rendering components are
used in the ADMix Renderer as well as in the ADMix Recorder for monitoring the recorded audio
signals in real-time.

The different components of the ADMix tools exchange metadata using the Open Sound Control
(OSC) protocol as a container. For instance, the Player reads the audio object tracks and associated
metadata and uses an ad-hoc OSC syntax to forward these metadata to the Renderer that calculates
appropriate signals for real-time reproduction over headphones or loudspeakers. More generally, the
ADMix tools can communicate with any external OSC compliant audio device or software application.
For instance, the ADMix Recorder can be connected to any Digital Audio Workstation (DAW) using
the ToscA [2] plugin that is used to translate ADM metadata to automation. ToscA is a plugin for
DAWs that allows the recording of automation tracks for arbitrary parameters that can be sent and
received as OSC messages via a network interface.

Figure 6: Using the ToscA plugin to connect a DAW with the ADMix Recorder

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 15 of 29

Figure 6 depicts the usual workflow used to create an ADM file. The ADMix Recorder receives the
audio signals delivered by the DAW either via hardware connections (for instance if they are run on
separate computers) or via virtual sound drivers. These signals may convey for instance single audio
object tracks, multichannel stems (e.g. direct-to-speakers or HOA encoded objects) or reverberation
beds provided by any reverberation plugin. The ADMix Recorder provides a GUI that represents the
sound scene and that can be used to manipulate the position of the different objects. An instance of
the ToscA plugin has to be inserted into any track of the DAW that is supposed to contain automation
data. Each ToscA instance is configured with a channel ID that is used to associate tracks in the DAW
with channels defined in the ADM Recorder. As OSC messages are sent via network interface, it
follows that the DAW and the ADMix Recorder can run on separate computers.

The OSC protocol was chosen for its simplicity, ease of integration and wide usage in the audio
community. An ad-hoc (non standardized) syntax was elaborated to convert ADM/XML parameters
to an OSC-like grammar. The primary motivation of the ADMix tools was the rapid prototyping of
object-based reverberation scenarios; therefore they do not support (yet) the complete ADM
specifications, and the OSC grammar only reflects a subset of the most relevant ADM parameters
(positions, gains) for these use cases.

A track with an LTC time code signal can be used to synchronize start and stop times between the
DAW and the ADM Recorder. However, there is no accurate timing synchronization of messages
between the DAW and the ADMix tools. Minor jitter might be noticed due to the OSC transport layer
herein used. These timing inaccuracies (typically less than 5 msec) were assumed negligible for the
intended scenarios.

2.3.1 Editing of metadata

Static metadata

A GUI interface is provided by the ADMix Recorder to define the structure of the ADM file, i.e. the
number and the type of the different objects. On the top of this configuration window (Figure 7), the
programme and content name can be specified (1). Below that, a list of "audio packs" (2) and (3) can
be set up. Each pack contains one or more "channels". Each channel has a unique channel number
that can be used together with the routing matrix on the left side of the window (4). The different
inputs of the routing matrix correspond for instance to the audio tracks delivered by the DAW.

In addition, the scene viewer GUI can be used to set the initial position of the different objects.

Figure 7: Metadata editor and routing matrix of the ADMix Recorder

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 16 of 29

Figure 8: Scene viewer used to set the position of the objects.

Dynamic metadata

The DAW can be used to record and edit any arbitrary parameter using the above-described ToscA
plugins. Such parameters can be for instance the position and the gain of the objects. The Upper-left
part of Figure 9 depicts the XML configuration file that is used to define the parameters that are
transmitted by the ToscA plugin. In this example, the parameters are the position (in Cartesian
coordinates) and the gain of the objects. The right part of Figure 9 is a screenshot of the DAW
window that shows the list of automation parameters in the track where the ToscA plugin has been
instantiated. Once all automation data is written / edited, the DAW can play back the audio tracks
and associated automation data that are recorded by the ADMix Recorder to create the ADM file.

Figure 9: [Upper-left] Configuration file of the ToscA plugin used to define the automation parameters
(Cartesian position and the gain of an object). [Right] View of the list of automation parameters in the

corresponding track of the DAW. [Lower-left] A view of the x and y automation tracks.

2.3.2 Current Limitations

The modular structure of the ADMix tools has some limitations. In its current state the ADMix
Recorder only supports single programme audio content and “flat structures”, i.e. with no nested
objects. Moreover, the ADMix Recorder cannot distinguish in between different objects that were
recorded as separate audio clips in one single audio track of the DAW. It means that an object is
defined for the whole duration of the audio file.

Similarly, the ADMix Recorder cannot be aware of automation envelope breakpoints. The
automation data are polled with a given time grain, which will increase the number of
AudioBlockFormats recorded in the produced ADM files, compared to a solution where the ADM file
would be directly exported from the DAW. For instance, according to the ADM recommendations,

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 17 of 29

the automation example of Figure 8 would need only four AudioBlockFormats, defining the
successive target positions of the source. By default, any compliant ADM renderer will interpolate
linearly the position of the source between these different breakpoints. In contrast, using the ADMix
recorder, the automation of the source will be polled with a fixed time grain. Post-processing of the
produced ADM file could however be envisioned in order to flatten the automation curves.

In its current state, the automation mechanism is only used for the position and gain of the objects. If
necessary, other parameters such as the importance level, On/Off interaction flag, start and end of
an object, etc. could be easily supported.

The above limitations only apply for the ADMix Recorder. The ADMix Player already supports
multiple programmes, nested objects, on/off interaction flags used for interactive muting of the
different objects.

2.3.3 Comments on the ADM format

The development of the ADMix tools revealed some needs of clarification or extension of the ADM
standard. For instance, the way to deal with object interaction in the case of nested objects was not
clearly defined. This motivated the proposition of a clarification in the ADM Usage Guidelines.

In the current state of the ADM recommendations, the default values of some parameters are
missing, which could lead to some inconsistencies.

The ADMix tools have been used to experiment on different ways to integrate reverberation beds in
an ADM file. This work could lead to some Usage guidelines in order to organise audio packs
conveying the room reverberation shared among several sources, with or without separate tracks for
first reflexions, etc. Similarly they suggested some extension propositions about HOA and Matrix
objects. These points have been discussed in an ADM workshop organised during the project, see
section 5.

2.4 In the ADM Pre-Processor

The purpose of the ADM Pre-Processor is to transform one ADM-based representation of an audio
scene into another ADM-based representation. A typical use case for this is to reduce the number of
elements to render – and therefore the required bandwidth – of an object-based audio scene.
Besides reducing complexity, such transformations can also help to foster interoperability. Given the
multitude of potential target formats, devices and platforms, it may be a reasonable approach to
transform an object-based production into a representation optimized for specific target
applications.

The most important aspect in this context is that the creative intent of the content producers is
preserved and that the user experience is not degraded. To achieve this, the Audio Definition Model
contains a number of features that help to convey this creative intent and can guide automated
processes in determining optimal transformations under given constraints.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 18 of 29

Figure 10: Pre-Processor within the reference architecture

Grouping and nesting of elements in an ADM structure is one of the most powerful features to
attach semantic information to an otherwise loose collection of elements. By referencing other ADM
elements of the same type, a hierarchy can be created. Especially two elements in the Audio
Definition Model can be used to create such a hierarchy: audioObjects and audioPackFormats.
audioObjects can be used to group elements that belong to the same content. An example for this
can be seen in Figure 11, where direct sound (AudioObject 3) and reverb (AudioObject 4) objects
have been grouped by a parent object “Music” (AudioObject 2). Grouping by audioPackFormat
elements, on the other hand, is used to combine elements that are related on a technical level. This
can be seen in Figure 11 that all parts of an ambience recording that may have been created by
multiple microphones, are referenced by the same audioPackFormat (AudioPackFormat 4). This
multi-lingual scene features two audioProgrammes with German and English speech. A musical
recording is shared by both programs. Furthermore, the speech items (green) have been marked
with the highest importance values.

The Audio Definition Model also features metadata that provides a description of the content itself
and its type. Examples for this include the description of speech, non-speech or mixed content,
which may be used by a transformation process to estimate the impact of an operation to determine
an optimal solution. This is also closely related to the description of interactive elements in an audio
scene, as this information has a severe impact on the possible combinations and complexity
reductions if interactivity shall still be possible afterwards.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 19 of 29

Figure 11: Slightly simplified ADM structure of an audio scene that can be used as input to the pre-processor.

Another very powerful mechanism is the use of importance values, which can be set on the
audioObject level as well as on the audioPackFormatLevel or even for audioChannelFormat elements
of type “object”. The general idea is that elements with a higher importance shall be preferred over
elements which are less important. This could, in an extreme case, mean to discard elements beyond
a certain importance threshold. In practice, however, it is more useful to use this information to
decide, for example, which objects might be combined into a pre-rendered channel bed. Elements
above an estimated importance threshold would be left untouched.

While this can only provide a limited overview of the possibilities, it becomes clear that the Audio
Definition Model provides many features and additional information that can be used to adapt and
optimize content to certain constraints and target applications if applied judiciously.

Yet, the flexibility and rich feature set of the Audio Definition Model comes with the expense that
some care must be taken when analysing an audio scene. One particular implementation challenge
steams from the fact that elements can be referenced multiple times. This can be due to fact that
some content is shared between otherwise independent audioProgrammes, which must be taken
into account when pre-processing this scene. Another possibility is that elements, namely
audioChannelFormats, can be referenced multiple times through various combinations of
audioProgrammes, audioObjects and audioPackFormats, which can lead to the same element being
used multiple times with different start times, offsets or group relationships.

It is apparent that supporting all degrees of freedom the Audio Definition Model offers can be quite
challenging. Nevertheless, this flexibility enables a rich feature set to encapsulate the creative intent
of an audio scene. By employing modern data structures and algorithms, most of the complexity and
challenges can be handled efficiently in an implementation. Given the chances and opportunities
offered by the Audio Definition Model compared to other currently used formats, the initial learning
and implementation challenges have to be considered worthwhile.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 20 of 29

3 Experience with the Implementation of Provision Formats
for Distribution to the End-user

3.1 Translation of ADM to MPEG-H

Within ORPHEUS there are two main metadata-models: ADM and MPEG-H. ADM is used in
production and contribution, whereas MPEG-H is used in distribution to the end-user devices.
Though the basic concepts of both metadata-models are similar in nature, the exact syntax and
semantic can differ widely and one model may use specific elements which cannot be expressed in
the other, which makes translation difficult.

The flexibility of ADM can become a problem for interoperability as ADM-files generated by one tool
could be interpreted differently by another one or, in the worst case, not at all. Having recognized
this problem, ORPHEUS partners have now started an effort at ITU-R to define more constraint
“profiles” of ADM. FHG proposed for example the “Broadcast Profile”. ADM files complying with this
profile should also be a subset of the MPEG-H metadata model such that conversion is facilitated, see

Figure 12. As the ADM Profiles are still under discussion in ITU-R, OPRHEUS has taken the pragmatic
approach of “ADM Templates”. An ADM Template is a specific example file from which it is known
that it can be converted automatically into MPEG-H. If the particular structure and constraints of the
ADM template are followed, it can be used as an ingest format to the MPEG-H encoder. The relation
of ADM, MPEG-H, Broadcast Profile and Template is illustrated in

Figure 12.

Figure 12: Relation between ADM and MPEG-H metadata

The first ADM Template which has been defined by Orpheus addresses the use case of “Dynamic
Objects” in which the audio scene is composed exclusively by dynamic audio objects (no channel bed,
no HOA, no interactivity, etc.). More specifically, the content includes two objects, a speaker moving
from left to right while his volume is reduced and a "humming bee" which is moving into the
opposite direction while increasing its volume. Position and gain are controlled through dynamic
object metadata. The content is designed such that correct translation and rendering can be verified
by listening to a) the ADM file as directly rendered to stereo, and b) the translated, encoded, and
decoded MPEG-H file. The processing chain for the conversion is illustrated in Figure 13. The files
highlighted with a blue circle will be published as a test vectors for 3rd party developers and content
creators. More ADM Templates for other use cases will follow and help to generate ADM content
that can be translated into MPEG-H in a predictable way.

ADM MPEG-H
ADM
Broadcast
Profile

Template

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 21 of 29

Figure 13: Processing chain for translating ADM to MPEG-H.

3.2 Formats used in iPhone App

The ORPHEUS Radio iOS app uses the MPEG-H codec for all audio and a large part of its metadata.
MPEG-H supports multiple audio objects in a single stream or file and uses highly efficient bitrate
reduction. The metadata carried over MPEG-H as used in the app are tightly coupled to the actual
rendering of the objects: objects can be toggled on/off, positioned in 3D space and their prominence
adjusted.

In addition to the MPEG-H stream, a JSON format was developed to contain additional metadata,
which is out of scope of the current MPEG-H or ADM standards. This metadata contains information
such as live transcript of text, accompanying images, user interface specifications and timed markers.
As the goal in ORPHEUS was not to develop a new metadata standard but rather to investigate the
usefulness of various metadata in the context of object-based broadcasting, JSON was chosen as a
ubiquitous container format and the JSON protocol has been kept as simple as possible.

All streaming in the iOS app happens over MPEG-DASH. Both MPEG-H (as mp4 fragments) and JSON
can be easily streamed over DASH and it is possible to jump in time, as required for the app.

ircam.wav

adm.wav

ADM-Extractor

ADM-2-MPH
Converter

adm.xml

pmd.xml

PCM-Extractor

ct.wav

PCM-Merger

mph_contribution.wav

mph.mp4

MPEG-H
Decoder

2.0

mph.wav

2.0

audio.wav

Switch

MPEG-H
Encoder

Control Track
Encoder

ADM-Renderer
by IRCAM

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 22 of 29

3.3 Formats used in AVR

The Trinnov Altitude AVR had to be enhanced with both, the capability of receiving a MPEG-DASH
stream and decoding the included MPEG-H audio. The MPEG-H decoder and renderer library was
provided by FHG. It was first build for the AVR architecture and tested offline, then integrated into
the AVR hardware. The format handling allowed to automatize the building of a UI for each stream,
in accordance to the content, and to allow the user to control and interact with it.

For the DASH streaming capability, a modified version of the free GStreamer media framework is
used by TRI, while FHG provided a DASH-Receiver as a GStreamer-Source-Plugin to handle this
streaming format. This integrated library was tested on local streams first, and, after a few
adjustments, on a remote stream. The result was a fluent reception and decoding of the streamed
content, and a correct rendering over any of the targeted loudspeaker configurations.

3.4 Formats used in Browser App

In order to make ‘The Mermaids Tears’ production available as a public, interactive stream, it was
necessary to use a non-standard approach to distribution and rendering. A method has been
developed to allow multiple audio objects to be streamed to the browser along with associated
metadata in the Serialised ADM format (see 3.4.1). This does not require any 3rd-party plugins or
decoders to be present in the user’s browser.

The approach uses the Web Audio API and MPEG-DASH to provide data to the browser. JavaScript
audio libraries developed by BBC R&D are then used to schedule the playback and render the audio
based on the incoming metadata. Figure 14 presents an overview of DASH reception and browser-
based rendering showing dashSourceNode to retrieve packets for forwarding to renderers using the
WebAudio API, with user interaction via the web browser.

Figure 14: Overview of DASH reception and browser-based rendering

User interactions such as character selection and output format can be used to control the routing of
audio objects. Objects can be active or inactive and their position set according to the metadata.

In order to prepare assets for this approach the multichannel PCM audio is split into a set of 5-
channel files. These 5-channel subsets are then encoded to AAC.

The compressed files are split into segments to allow them to be requested sequentially by the
client. Serialised ADM metadata is also segmented into XML chunks to be requested along-side the
audio segments. Once decoded in the browser, audio and metadata segments are scheduled for
playback. The audio is routed to a renderer based on the user choice. The location and levels of the

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 23 of 29

objects are determined by the metadata.

3.4.1 Serial ADM for Playout

As the specification of the S-ADM is still undergoing final refinements in the ITU-R, it was decided to
keep the scope of the parameters used to a sensible minimum to ensure the development of the
libraries that generate and read the metadata was not over-complicated.

Therefore, the transport part of the S-ADM was kept to the simplest form where each frame is of the
‘full’ type, so that they carry a complete set of ADM parameters (as opposed to the ‘intermediate’
type which only carries ADM parameters that have changed since the previous frame). The frame
size was set to a duration of 1 second to match that used for the DASH playout frame size.

The ADM metadata was also kept to a very simple profile which only used the ‘Objects’ type, and the
only parameter used in the audioBlockFormat was position (azimuth, elevation, and distance). The
audio objects were also static, so there was no added complexity of dealing with dynamic (i.e.
moving) objects. To enable the interactivity of choosing one of the three stories, two layers of
audioObjects were used. The top layer consists of three story audioObjects, which were
complementary to each other (i.e. only one could the played at a time). The second layer consisted of
each of the sound effects and microphone recordings from each room. These audioObjects were all
time-limited, so were only active at the time they were played.

As a maximum of 15 audio tracks were allowed (to ensure simple interfacing with the MPEG-H
encoder profile), audioObjects that did not overlap in time were multiplexed into a single track.
While this was done manually for this test, ideally it would be automated.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 24 of 29

4 Implementation of Metadata Formats for Non-linear
Reproduction

4.1 Implementation in Sequoia

For pilot phase 2 of the project the ORPHEUS team decided to implement and demonstrate an
important interactive use case: Programs with a variable length. In practice this means, that, given a
certain level of interest, the same program can be listened to at different degrees of content depth
and therefore different lengths.

During production the content is to be sectioned and tagged to indicate which sections fit to the
following levels of interest:

 Level 1: A very short “headline” version, containing only the core message

 Level 2: A slightly longer version including all key information

 Level 3: An even longer version with additional background information

 Level 4: A more complete version, adding further details

 Level 5: The full version including all details, associations, etc.

These descriptions won’t necessarily fit for any production, but they provide a sense of how the
levels are expected to be used.

The task of the DAW is to provide the user with means of editing levels of interest. For Sequoia this
was realized in the form of markers on the project timeline, which can be set from the “marker
manager”. A marker indicates that all content between its location and the location of the next
marker are part of a certain interest level. By using keyboard shortcuts, they can be added easily
during playback. For an example with added markers see Figure 15.

Figure 15: “Experience object-based audio” created by BR with added markers for interest level

In addition, a preview mode has been implemented. By selecting a marker of any interest level, only

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 25 of 29

the sections of that level and levels below it will be played. Sections marked with a higher interest
level will be skipped.

For the ADM export these markers will be stored as time segments (part elements) in the metadata
chunk of the BW64 file conformant to the EBUCore definition [3]. This information will then need to
be transported further along the broadcast chain to eventually be used on the end-user device.

4.2 Implementation in iPhone App

From an end-user’s point of view, non-linear reproduction consists of two concepts: the selection of
which programs to play (‘on-demand’) and the decision of which parts to play from these programs
(‘variable length’). Object-based broadcasting can be very well suited for non-linear reproduction,
when the appropriate metadata is available. In the scope of the ORPHEUS project it was decided to
limit non-linear playback to the interaction with a single program, as not enough content was
available to meaningfully experiment across multiple programs.

In the ORPHEUS Radio app this metadata takes the form of timed markers that contain information
about topics or subjects as well as relative importance levels of a section (clip). This means that
sections can be selected for playback based on criteria like “matches the listener’s interests” and
“matches the listener’s desired level of depth”. The times markers are simple JSON objects that can
be derived from EBUCore metadata, such as produced in Sequoia. This JSON can be streamed over
MPEG-DASH in parallel to the MPEG-H audio stream.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 26 of 29

5 ADM Expert Workshop

The Audio Definition Model ADM is a very flexible model to describe all kinds of audio content, yet
there is not much guidance on how many object-based audio use cases should be handled. Being a
fairly new standard, implementers, developers and users are still about to develop a common
understanding of how to use the ADM efficiently. The very same use case can potentially be
modelled differently using the ADM. During the course of the ORPHEUS project the consortium
members gained significant knowledge and experience on applying the Audio Definition Model to the
use cases and productions at hand.

It became clear that an extensive exchange not only within the project, but also beyond the
consortium with other implementers, end users and adopters, is vital for the advancement of the
ADM. A first step to achieve this was to organize an “internal ADM Expert Workshop”.

The workshop was held in parallel with the consortium meeting in Heidelberg from January 16th to
18th 2018. The focus of the workshop was to discuss specific use cases and establish a common
understanding on how they are supposed to be modelled. Even though the focus should be on
structures, which are realisable right now with the current version of the ADM, the discussion was
explicitly open for extensions to the standard. Additionally, issues the partners encountered in the
course of working with the ADM, which are not related to any specific use case, should be discussed.

In order to avoid too abstract discussions, participants and interested parties where asked to suggest
real-world use cases, questions or problems that have been encountered during their work with
object-based audio so far. These included both scenarios that have been already used by the
ORPHEUS project and future applications that we’re considered useful and interesting by the
participants.

Use case Short description

1 Foreground /
Background balance

The user is able to change the balance between foreground and
background of the scene.

2 Multiple languages The user is able to select the target language out of a list of
available languages.

3 Binaural content Use of pre-produced binaural content / dummy head recordings.

4 Multiple Storylines The user can select different perspectives on the story. An
example is the “Mermaid’s Tears” production.

5 Voice over (language +
audio description)

The user can activate an additional audio “overlay”, e.g. a
translation of the original. Ducking of the original content should
be employed to increase speech intelligibility.

6 Hierarchical structure of
reverb

Provide a semantic description of the relations between direct
sound and reverberation using ADM referencing.

7 Diffuse reverberation Reduce the amount of required diffuse reverberation channels by
applying the ‘diffuse’ attribute to a set of N channels.

8 In-head localization Intended in-head localisation of some parts of a binaural
production can be an important dramatic element.

9 EBU metadata & ADM
element connections

The EBUCore metadata set provides a rich set of content
metadata, e.g. specifying artist, composer, etc. The possibility to
attach this metadata not only to a whole file, but a single element
of an ADM scene would be useful. This could be used, for example,
to identify a piece of music that is part of the audio scene.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 27 of 29

10 Generalized matrix
encoding/decoding

Use the “matrix” type of the ADM to express all kinds of matrix
encoding/decoding related applications. Examples might include
custom down-mix matrices or HOA decoding matrices.

11 Head-locked objects Within an VR environment, where binaural reproduction with
head tracking is used, using elements that are not affected by
head tracking can be desirable.

12 Manipulation of HOA
content

A global rotation parameter for HOA objects might be useful. This
parameter could be open or not to user interaction. Other
manipulation such as focus or ‘blur’ could also be interesting.

13 Convolution/filtering Specifying filtering/convolution to be applied to one or several
channels of a pack with an associated set of impulse responses or
filter coefficients. Specifying the impulse response would provide
some guarantee of the rendering result.

Table 2: List of use cases of the ADM expert workshop with slightly simplified/shortened descriptions

Furthermore, topics that were not related to single use case have been collected before and during
the workshop. This includes the interpretation, rendering and usage of “distance”, how to specify a
“default” audioProgrammes, start times of nested audioObjects and the usage of importance values.

The key outcomes of this workshop can be roughly divided into two parts.

It is planned to publish the consolidated use cases and the detailed results of the discussions in a
separate document. This will include detailed descriptions of the use cases and the proposed
solutions, graphical representations and examples in ADM format. The focus of this document will be
on solutions that can be implemented with the current version of the ADM standard.

The other part will be feed into the relevant ITU groups and consists of proposals for future
extensions and (editorial) clarifications of the ADM recommendation itself as well as the usage
guidelines [4].

The very fruitful ADM expert workshop will be repeated also beyond the lifetime of the project.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 28 of 29

6 Conclusions

The ORPHEUS project’s objective to set up, implement and validate pilot and reference architectures
as well conducting pilots for object-based audio broadcasting has led to a comprehensive inventory
of long-term established and emerging audio formats and metadata models.

Amongst this plethora we had to analyse, evaluate and select, which of ‘ready available’ or ‘still
emerging’ solutions fit best not just within the basic conditions of our project, but also in the wide
space of practical technical application and content requirements in the broadcasting eco-system.

There, a clear distinction between utmost quality internal professional production formats and
excellent but economic public distribution and delivery formats is still necessary and required, and
will remain for the foreseeable future.

The choices being taken here within the ORPHEUS project for both sides demonstrate a state-of-the-
art solution, being even sort of a ‘golden cut’ in order to demonstrate best the forward looking
perspectives and advantages of object-based audio technology.

D4.3: Final report on representation, archiving and provision of object-based audio

© 2015 - 2018 ORPHEUS Consortium Parties Page 29 of 29

References

[1] Carpentier, T., Noisternig, M., Warusfel, O. "Twenty Years of Ircam Spat: Looking Back, Looking
Forward", 41st International Computer Music Conference (ICMC), 2015

[2] Carpentier, T. "ToscA: An OSC Communication Plugin for Object-Oriented Spatialization
Authoring", 41st International Computer Music Conference (ICMC), 2015

[3] EBUcore Metadata Set: Tech 3293, October 2017, EBU. https://tech.ebu.ch/MetadataEbuCore

[4] Usage Guidelines for the Audio Definition Model and Multichannel Audio Files:
https://www.itu.int/pub/R-REP-BS.2388-2-2017

[end of document]

https://tech.ebu.ch/MetadataEbuCore

