
Grant Agreement No.: 687645
Research and Innovation action
Call Topic: H2020 ICT-19-2015

Object-based broadcasting – for European leadership in next
generation audio experiences

D5.5: Implementation and documentation of final object-based
renderers

Version: v1.0

Deliverable type D (Demonstrator)

Dissemination level PU (Public)

Due date 28/02/2018

Submission date 08/03/2018

Lead editor Benjamin Duval (Trinnov)

Authors Andrew Mason (BBC), Chris Baume (BBC), Michael Meier (IRT), Niels
Bogaards (elephantcandy), Benjamin Duval (Trinnov)

Reviewers Nicolas Epain (b<>com), Olivier Warusfel (IRCAM)

Work package, Task WP5

Keywords Renderers, User interfaces

Abstract

This document aims to present an overview of work that has been carried by the various partners in
the ORPHEUS consortium related to the renderers for object-based broadcasting clients.

Description of the demos and documentation is provided to illustrate the development related to the
rendering in the web browser, in IP studio, in the pre-processor, in the AV receiver and in the iOS
mobile app.

[End of abstract]

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 2 of 20

Document revision history

Version Date Description of change List of contributor(s)

v0.1 19/01/2018 Initial structure, section 4 Benjamin Duval (Trinnov)

v0.2 13/02/2018 Sections 2, 3 and 4 Andrew Mason (BBC), Michael
Meier (IRT)

v0.3 16/02/2018 Section 5
Conclusions

Niels Bogaards (elephantcandy)
Benjamin Duval (Trinnov)

v0.4 21/02/2018 Introduction, executive summary Benjamin Duval (Trinnov)

v0.5 26/02/2018 Reviewed Nicolas Epain (b<>com)

v0.6 27/02/2018 Reviewed Olivier Warusfel (IRCAM)

v0.7 28/02/2018 Section 2 revised Chris Baume (BBC)

v0.8 01/03/2018 Updated reference architecture
block diagram

Michael Weitnauer (IRT)

v0.9 02/03/2018 Formatting Werner Bleisteiner (BR),
Benjamin Duval (Trinnov)

v0.95 02/03/2018 Language corrections Nicolas Epain (b<>com), Chris
Baume (BBC)

v1.0 05/03/2018 Final editing Anja Köhler (Eures)

Disclaimer

This report contains material which is the copyright of certain ORPHEUS Consortium Parties and may
not be reproduced or copied without permission.

All ORPHEUS Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the ORPHEUS Consortium Parties nor the European Commission warrant that the
information contained in the Deliverable is capable of use, or that use of the information is free from
risk, and accept no liability for loss or damage suffered by any person using the information.

Copyright notice

© 2015 - 2018 ORPHEUS Consortium Parties

1
 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 3 of 20

Executive Summary

This document summarizes the work done by the ORPHEUS partners with regard to object-based
audio broadcast rendering on the reception (consumer) side.

Most of the work has consisted of developing, implementing and testing individual components that
were integrated into the different clients used during Pilot 1. MPEG-H decoding libraries have been
integrated in end devices for end-user object-based audio reception, and tools and components
based on the WebAudio API have been developed for rendering inside common web browsers. The
IP radio studio, used to produce object-based content, also has a rendering capability, which allows
monitoring of the content being produced. The pre-processor is used in any case of object-based
rendering.

Most of the work presented in this document consists in actual working prototypes of components of
the object-based broadcasting chain. These prototypes have been demonstrated live during the 2nd
review of the project, which was held at the BBC premises in December 20172.

2
 two videos of this are available on the ORPHEUS website: https://orpheus-audio.eu/videos/

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 4 of 20

Table of Contents

Executive Summary .. 3

Table of Contents ... 4

Abbreviations ... 5

1 Introduction ... 8

2 Rendering in the web browser .. 9

3 Rendering in IP Studio .. 10

4 Rendering in the Preprocessor .. 12

5 MPEG-H reception over a DASH stream with the high-end AV receiver 14

6 Rendering implementation in the iOS mobile application .. 17

7 Conclusions .. 20

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 5 of 20

List of Figures

Figure 1: reception macro-block and monitoring sub-block in the ORPHEUS architecture 8

Figure 2: On-screen pop-up menu for selection of rendering type, in The Mermaid’s Tears 9

Figure 3: Main pipeline from IP Studio used for pilot 1, stage C .. 10

Figure 4: IP studio in use during the Pilot 1 demo at the ORPHEUS 2nd review in December 2017 11

Figure 5: Simplified schematic view of the basic preprocessing strategies and signal flow 12

Figure 6: Schematic depiction of reducing four elements of a string ensemble down to two elements
by using pre-rendering and Virtual Panning Spots (VPS) .. 13

Figure 7: Trinnov Altitude32 processor ... 14

Figure 8: GUI of the Trinnov Altitude32 processor ... 15

Figure 9: Temporary installation and GUI of the Trinnov Altitude32 processor in the IP studio for the
Pilot 1 demo conducted at the ORPHEUS 2nd review in December 2017 .. 16

Figure 10: Screenshots of the Audio Format selection and the Foreground/background balance
control ... 18

Figure 11: Screenshots of interaction on an individual object (left) and 3D configurations (right) 19

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 6 of 20

List of Tables

Table 1: Audio output formats supported in the ORPHEUS Radio iOS app .. 17

Table 2: Examples of OBA interaction present in the iOS app .. 18

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 7 of 20

Abbreviations

AAC Advanced Audio Coding

ADM Audio Definition Model

API Application Programming Interface

AVR Audio Video Receiver

DASH Dynamic Adaptive Streaming over HTTP

HRTF Head-Related Transfer Function

MADI Multichannel Audio Digital Interface

MPEG Moving Picture Experts Group

OBA Object-Based Audio

RTP Real-time Transport Protocol

UMCP Universal Media Composition Protocol

VBAP Vector Base Amplitude Panning

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 8 of 20

1 Introduction

This document summarizes the work done by the ORPHEUS partners with regard to object-based
audio broadcast rendering on the reception (consumer) side.

Figure 1: reception macro-block and monitoring sub-block in the ORPHEUS architecture

The ORPHEUS object-based broadcasting system is an extensive system where innovative solutions
are required throughout. Work Package 5 (WP5) focuses on the reception side: the systems that
consumers will see and use to experience object-based broadcasts.

Two distribution formats were chosen for use during Pilot 1: MPEG-H (for use in the mobile app
client and hardware receiver) and AAC+ADM (for common web browsers)

For the integration of MPEG-H into the mobile app and the AV Receiver, FhG IIS has provided custom
MPEG-H decoding libraries that can be integrated by the other partners. This integration work has
been completed, and was demonstrated in Pilot 1 in December 2017.

Current versions of common web browsers do not support MPEG-H decoding yet, and within
ORPHEUS a combination of AAC encoded audio streams and ADM metadata streams is used as an
alternative. The emerging WebAudio API standard is used as a client-side rendering platform. Test
components have been developed for critical parts of the rendering that were needed in Pilot 1.

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 9 of 20

2 Rendering in the web browser

Rendering in the web browser of audio transmitted as AAC with ADM-style metadata was
implemented for the live transmission of The Mermaid’s Tears and later for its evaluation on BBC
Taster3. The rendering uses JavaScript written by BBC R&D to implement a renderer in combination
with the Web Audio API4.

Two main types of rendering options were presented to the user through a pop-up menu at the
bottom left of the browser window, as shown in Figure 2.

Figure 2: On-screen pop-up menu for selection of rendering type, in The Mermaid’s Tears

1. Headphones

Binaural rendering was used to give the user a 3D immersive audio experience over
headphones. This was provided through a custom implementation in the BBC R&D JavaScript
library, rather than the binaural rendering in the web browser, as it allowed the use of
different HRTFs (although this option was not presented to the user).

2. Stereo/Surround

Vector-base amplitude panning (VBAP)5 was used to render to loudspeaker outputs. If the
user’s sound card had 5 or more output channels, a 5-channel surround option was
presented. Otherwise, only stereo output was presented. The VBAP rendering was
implemented within the BBC R&D JavaScript library.

3
 BBC Taster trials are time-limited. The Mermaid’s Tears can still be replayed at http://mermaidstears.ch.bbc.co.uk

4
 https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

5
 Pulkki, Ville, “Virtual Sound Source Positioning Using Vector Base Amplitude Panning”, JAES Volume 45 Issue 6 pp. 456-

466; June 1997

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 10 of 20

3 Rendering in IP Studio

A renderer is needed in the studio in order to know that the audio that is being created is going to
sound as it should when it reaches the audience. For this purpose, a renderer was implemented as a
component within IP Studio. For pilot 1, stage C6, the renderer component was based on code from
FhG to implement the renderer from MPEG-H.

An annotated screenshot of the main signal pipeline in IP Studio is shown in Figure 3. The pipeline
was created using a tool – the “configurator” – within IP Studio that enables the construction of
flows of signals or data between processors. The yellow highlighting and text labels have been added
by hand to the screen-shot.

Figure 3: Main pipeline from IP Studio used for pilot 1, stage C

On the left are the RTP receivers for audio sources. Microphone sources are carried as AES67 streams
from Axia xNodes, the pre-recorded sources are carried as RTP streams entirely within IP Studio.
These multiple flows are multiplexed into one flow for ease of handling, by a source combiner.

Metadata, carried using UMCP and received from the live production interface over web sockets, is
converted into MPEG-H style and the MPEG-H production library from FhG is used to create a
“control track” (an audio-like PCM signal that carries the metadata). The production library is invoked
by the component labelled “ADM_MPH…” in the figure.

The rendering of the audio, with the control track, is implemented in an IP Studio component shown
in the upper right of the figure, labelled “MPEG_H_...”. This component receives a flow of audio
sources and control track, and invokes the MPEG-H renderer library from FhG, passing it blocks of
audio and control track. The library functions render the audio and return blocks of audio for
loudspeakers.

In the implementation for Pilot 1, stage C, the connection to the loudspeakers in the studio was
through the same MADI interface as used for the connection to the MPEG-H live encoder. A final
multiplexing process (on the right of the figure) combines the rendered audio with the original
sources and the control track for output over MADI.

6
 In pilot 1 phase C, a live production was streamed using MPEG-H during the review meeting with a representative of the

European Commission and independent assessors. See https://orpheus-audio.eu/videos/ for documentation.

https://orpheus-audio.eu/videos/

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 11 of 20

Practical simplifications in this implementation.

In general, the hierarchy of objects that form the output of a broadcast chain is subject to change
from time to time. In Pilot 1, stage A, the combination of objects into mutually-exclusive groups
(“switch groups”) allowed the audience to select from one of three character’s perspectives. This was
described by metadata in ADM and UMCP, and was relatively complex. For Pilot 1, stage C, a much
simpler hierarchy of objects was used.

Rather than implement a fully dynamic meta-data handling system capable of dealing with any
possible object hierarchy, knowledge of the nature of production was used to initialise the renderer
component when the pipeline was started.

One of the advantages of object-based audio is its adaptability to different listening environments.
However, in this instance, the number and position of the loudspeakers in the studio was known in
advance, and dynamic reconfiguration was not a required capability. As such, when the pipeline was
started, the renderer component was initialised with a static configuration of loudspeakers to which
to render.

Figure 4: IP studio in use during the Pilot 1 demo at the ORPHEUS 2nd review in December 2017

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 12 of 20

4 Rendering in the Preprocessor

The main purpose of the Preprocessor is to transform one representation of an audio scene into
another representation. This is, for example, useful to either reduce the complexity of the audio
scene or to increase compatibility with other components in a signal chain.

Figure 5: Simplified schematic view of the basic preprocessing strategies and signal flow

Even though it may not be obvious immediately, rendering is an integral part of the preprocessing
component. This is because there are in principle three basic strategies that can be applied when
transforming an object-based audio scene.

First of all, some elements should be passed through unchanged, for example if they must be kept
separated to allow user interaction, or if these elements are very important to the fidelity of the
audio scene.

The second and most obvious option to reduce computational complexity is to discard elements.
While there are a few valid use cases for this strategy, it is apparent that this is suboptimal and will
lead to a degradation of the quality of the audio scene in most cases.

The third strategy is to partially pre-render the audio scene. In its simplest form, a so-called channel
bed will be added, which corresponds to a loudspeaker setup suitable for the target application. For
headphone playback, the channel bed may also be a binaural signal. But this approach is not limited
to using a single channel bed and the bed itself is, in fact, not restricted to predefined speaker
setups. For example, multiple elements of an audio scene can be combined and grouped using
techniques like Virtual Panning Spots (VPS).

Prerender

Pass through

Discard

Renderer instance

Scene analysis Combiner
Audio

Metadata
Audio

Metadata

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 13 of 20

Figure 6: Schematic depiction of reducing four elements of a string ensemble down to
 two elements by using pre-rendering and Virtual Panning Spots (VPS)

The basic principle with this approach is to pre-render content to virtual speakers within the audio
scene. As an example, one could consider a string ensemble represented by four distinct audio
elements (see Figure 6). By panning these four elements between two virtual panning spots, the
number of elements to render can be reduced while maintaining a nearly equivalent auditory event.
The main advantage of this approach is that the position of those virtual speakers can be chosen to
be optimal for the content to be preprocessed.

The preprocessing engine can therefore use multiple renderer instances to render parts of the audio
scene and use optimized parameters for each subrendering.

The renderer implementation integrated into the preprocessing engine is a software
implementation. By default, it uses a VBAP-based three-dimensional panning for rendering to
(virtual) loudspeakers. Almost any arbitrary target loudspeaker setup geometries are supported. To
render binaural signals, HRTF-based rendering is supported. By default, IRT’s HRTF database of a
Neumann KU100 dummy head is used, but other HRTF datasets may be used as well.

The number of elements that can be rendered simultaneously is only limited by the computational
resources available; there is no algorithmic or architectural restriction.

Furthermore, the software is able to operate both in a file-based and in a real-time mode. The latter
is important to process live events, for example, or to be able to use the renderer implementation in
production.

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 14 of 20

5 MPEG-H reception over a DASH stream with the high-end
AV receiver

The Trinnov Altitude32 AV receiver is an AV preamplifier with decoding capabilities for several 3D
audio formats, object or (non-object) channel based. It can drive up to 32 loudspeakers, making it the
most powerful audio processor on the market. It is used in home theatres to reproduce contents
from any physical or network source. Over the course of the ORPHEUS project, Trinnov integrated
MPEG-H decoding libraries to the Altitude32.

Figure 7: Trinnov Altitude32 processor

Several steps have been necessary to conduct the integration of the MPEG-H decoder and renderer
library in the Trinnov AVR. First, the existing code has been refactored to allow sufficient space for a
new decoder. The AVR was already embedding a few decoders, and the cohabitation of yet another
one was very difficult due to the software architecture. A new inter-process mechanism has been
designed to allow the MPEG-H codec to run on the processor without disturbing the other ones, and
to allow the user to switch between contents with different formats without reinitializing the
machine.

Then, the computing performance of the AVR has been increased by optimising memory usage and
computing efficiency. The smart use of multi-threading combined with efficient signal processing
allowed to lower CPU usage, which in turn allowed the MPEG-H decoder to run on the processor.

Once the decoding and rendering library was ready, the integration started with the help of FhG. As
the first ever integration of this library in an AVR driving so many loudspeakers, comprehensive tests
had to be carried out to ensure the correct behavior. The example files provided were successfully
decoded and extensively tested.

In addition, support for MPEG-DASH streaming was added to the AVR. As Trinnov uses a modified
version of the free GStreamer media framework, FhG provided a DASH-Receiver as a GStreamer-
Source-Plugin to handle this streaming format. This integrated library was tested on local streams
first, and, after a few adjustments, on a remote stream. The result was a fluent reception and
decoding of the streamed content and a correct rendering over any selected loudspeaker
configuration.

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 15 of 20

A GUI is constructed automatically when the streaming starts, which allows adjusting stream specific
parameters in real time. In the first example stream, it was for instance possible to:

 switch between two languages for the dialogue object (German and English),

 change the volume and/or the prominence of the audio objects (the dialogue and a bee that
moves around the scene)

 change the position of one of the objects (the bee) within a range authorized by the sound
designer

These operations could be done by selecting items in lists or moving sliders. The GUI is using web
technology and can be accessed (after authorisation) from any browser that connects to the WiFi-AP
of the AVR. Figure 8 shows the Trinnov-AVR Altitude32 next to the automatic GUI running on a
tablet.

Figure 8: GUI of the Trinnov Altitude32 processor

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 16 of 20

Figure 9: Temporary installation and GUI of the Trinnov Altitude32 processor in the IP studio
 for the Pilot 1 demo conducted at the ORPHEUS 2nd review in December 2017

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 17 of 20

6 Rendering implementation in the iOS mobile application

The iOS app’s main purpose was to highlight as many of the novel possibilities of object-based
broadcasting. A user interface was designed to make to the often very technical options
understandable to a broad public. At the same time, the app served as a real-world proof of concept
for object-based broadcasting and a complete streaming and rendering infrastructure was designed
and implemented to provide a convincing listening experience.

Codec: MPEG-H

The object-based distribution codec chosen for the mobile app was MPEG-H, as it has many object-
based audio features, has high bitrate reduction and an entire OBA radio program can be encoded in
a single stream. Currently, no mobile operating system ships with an MPEG-H decoder. FHG has
developed an MPEG-H decoder library for iOS, but it was only used for internal projects.
Elephantcandy successfully integrated the FHG library into the mobile ORPHEUS iOS app.

Streaming: MPEG-DASH

Every ORPHEUS content was streamed to end-users using MPEG-DASH. To receive the MPEG-H file
fragments, elephantcandy developed an MPEG-DASH client library compatible with the mp4
fragments containing the MPEG-H data. To allow smooth playback in variable-length playback
situations, as well as support offline playback, a smart caching and pre-fetching system was
developed, capable of linking MPEG-DASH fragments to the logical time of a radio program.

Output Formats

Mobile radio apps are used in many situations: at home, on the road, during sports activities, etc. For
each situation, different reproduction hardware may be connected, from Hi-Fi headphones to
wireless speakers or multi-channel surround sound setups. An important feature of object-based
audio is that the audio can be rendered optimally for all these different situations. The iOS app
supports the following configurations:

audio format typical connection

mono internal speaker

stereo headphones, loudspeakers, AirPlay

binaural headphones

5.1 surround HDMI

Table 1: Audio output formats supported in the ORPHEUS Radio iOS app

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 18 of 20

Figure 10: Screenshots of the Audio Format selection and the Foreground/background balance control

Interactive Audio Objects

Using a mobile app, rather than conventional radio reception hardware, it becomes possible to
provide much more control over the audio and the program. With OBA, using specialised user
interfaces and pre-defined interaction models, a listener may be able to selectively toggle audio
objects on and off, adjust their relative prominence, select alternative objects or alter an object’s
rendered position in 2D or 3D space. The programs available in the iOS app demonstrate many of
these features:

Table 2: Examples of OBA interaction present in the iOS app

Interaction Example

object replacement language selection (most programs are available in
English and German, some also in French)

object prominence foreground/background adjustment (for instance to
adjust commentator vs. stadium noise during a
football game)

individual object manipulation freely movable objects that can be placed anywhere in
3D space, muted, changed in prominence

object configurations spatialisation presets (to select the rendered sound
stage, for instance in front of around the listener)

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 19 of 20

Figure 11: Screenshots of interaction on an individual object (left) and 3D configurations (right)

Non-linear playback

In the ORPHEUS project, object-based audio not only implies the manipulation of audio objects and
their rendering to various output formats, but also the interactive selection of which sections in time
of the stream to play, based on the listener’s preferences and timed metadata. From a rendering
point of view in the mobile app, this means that the streamed MPEG-H fragments need to be
assembled in dynamic configurations. To this end, a sophisticated caching system was developed for
the Pilot Phase 2 version of the ORPHEUS Radio app.

D5.5: Implementation and documentation of final object-based renderers

© 2015 - 2018 ORPHEUS Consortium Parties Page 20 of 20

7 Conclusions

This document presented the different implementations of the object-based audio renderers into the
demonstrators developed for the ORPHEUS project. This work has been carried within task T5.1, and
has been used for Pilot 1 integrated within the WP2.

These object-based renderers allow for several interactions (object selection such as language
selection, foreground/background balance, object position manipulation, etc.), that may be specific
to a stream. A content-specific user interface is created to let the user perform these controls.

Some of these interactions are similar throughout all the renderer implementations. Others are
specific to the typical use of the target platform: a web browser will not offer the exact same
capabilities as a high-end AVR; the aim of the IP studio is to create some object-based content,
whereas the iOS app is to play it to end users.

For more challenging usage situations, some techniques of bandwidth and/or complexity reduction
have been developed in order to ensure the best user experience possible

These demonstrators were presented during the second project review, which took place in London
in December 2017, and will be shown again for a larger audience, improved with the latest progress
being prepared, at the final ORPHEUS workshop in Munich in May 2018.

[end of document]

